Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
نویسندگان
چکیده
We consider empirical risk minimization for large-scale datasets. We introduce Ada Newton as an adaptive algorithm that uses Newton’s method with adaptive sample sizes. The main idea of Ada Newton is to increase the size of the training set by a factor larger than one in a way that the minimization variable for the current training set is in the local neighborhood of the optimal argument of the next training set. This allows to exploit the quadratic convergence property of Newton’s method and reach the statistical accuracy of each training set with only one iteration of Newton’s method. We show theoretically that we can iteratively increase the sample size while applying single Newton iterations without line search and staying within the statistical accuracy of the regularized empirical risk. In particular, we can double the size of the training set in each iteration when the number of samples is sufficiently large. Numerical experiments on various datasets confirm the possibility of increasing the sample size by factor 2 at each iteration which implies that Ada Newton achieves the statistical accuracy of the full training set with about two passes over the dataset.1
منابع مشابه
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
We consider large scale empirical risk minimization (ERM) problems, where both the problem dimension and variable size is large. In these cases, most second order methods are infeasible due to the high cost in both computing the Hessian over all samples and computing its inverse in high dimensions. In this paper, we propose a novel adaptive sample size second-order method, which reduces the cos...
متن کاملFirst-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization
This paper studies empirical risk minimization (ERM) problems for large-scale datasets and incorporates the idea of adaptive sample size methods to improve the guaranteed convergence bounds for first-order stochastic and deterministic methods. In contrast to traditional methods that attempt to solve the ERM problem corresponding to the full dataset directly, adaptive sample size schemes start w...
متن کاملSparse learning with duality gap guarantee
We propose a general regularized empirical risk minimization framework for sparse learning which accommodates popular regularizers such as lasso, group lasso, and the trace norm. Within this framework, we develop two optimization algorithms. The first method is based on squared penalties added to the empirical risk and is solved using a subgradient-based L-BFGS quasi-Newton method. The second m...
متن کاملCommunication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
We consider distributed convex optimization problems originated from sample average approximation of stochastic optimization, or empirical risk minimization in machine learning. We assume that each machine in the distributed computing system has access to a local empirical loss function, constructed with i.i.d. data sampled from a common distribution. We propose a communication-efficient distri...
متن کاملDiSCO: Distributed Optimization for Self-Concordant Empirical Loss
We propose a new distributed algorithm for empirical risk minimization in machine learning. The algorithm is based on an inexact damped Newton method, where the inexact Newton steps are computed by a distributed preconditioned conjugate gradient method. We analyze its iteration complexity and communication efficiency for minimizing self-concordant empirical loss functions, and discuss the resul...
متن کامل